Month: August 2014

Videos

suckericide, sucker controller, tobacco suckericide, suckericide, tobacco plant growth, improves quality of tobacco
suckericide, sucker controller, tobacco suckericide, suckericide, tobacco plant growth, improves quality of tobacco




style=”display:inline-block;width:160px;height:90px”
data-ad-client=”ca-pub-5600793296832451″
data-ad-slot=”1938889720″>

Tobacco Sucker Control

 

suckericides_tobacco,tobacco suckericides banana suckericide, suckericides tobacco suckericide, suckericides suckericide, suckericides banana suckericide, sucker controller supplier, sucker controller exporter, sucker controller tobacco suckericide, sucker controller suckericide, sucker controller banana suckericide, suckericides sucker control, tobacco suckericides supplier, tobacco suckericides exporter, tobacco suckericides sucker control, tobacco suckericides tobacco suckericide, tobacco suckericides suckericide, suckericides exporter, suckericides supplier, banana suckericides banana suckericide, banana suckericides suckericide, banana suckericides tobacco suckericide, banana suckericides sucker control, banana suckericides exporter, banana suckericides supplier, manufacturer banana suckericide, manufacturer suckericide, manufacturer tobacco suckericide, manufacturer sucker control, india suckericide india tobacco suckericide, india sucker control,

tobacco suckericide

AXE-11 liquid de-suckering agent is a contact type suckericide made from natural fattly
alcohols to control suckers in tobacco crops. Application of AXE-11 liquid suckericide
improves quality and quantity of tobacco crop. On application of AXE-11 liquid suckericide
labour cost is decreased and yield of tobacco increases by 25% – 35%.
AXE-11 will not leave any residues on the crop.

Note : Topping stage is of importance for yield production in tobacco to improve plant growth, leaf size development, improved quantity and quality. Moreover, application of AXE – 11 suckericide in early button stage can control suckers better than flowering stage.

How to apply:

1 litre AXE-11 liquid de-suckering agent should be mixed with 20 litres water (1:20) Mix thoroughly to form uniform mixture. Apply the solution using an applicator after topping from top to bottom in clear weather between 10.00am to 4.00pm

AXE-11 liquid de-suckering agent shall be applied on requirement.

 

Packing Available in 2.5 litre HDPE jerry can

 

 

suckericide_tobacco, tobacco suckericides banana suckericide, suckericides tobacco suckericide, suckericides suckericide, suckericides banana suckericide, sucker controller supplier, sucker controller exporter, sucker controller tobacco suckericide, sucker controller suckericide, sucker controller banana suckericide, suckericides sucker control, tobacco suckericides supplier, tobacco suckericides exporter, tobacco suckericides sucker control, tobacco suckericides tobacco suckericide, tobacco suckericides suckericide, suckericides exporter, suckericides supplier, banana suckericides banana suckericide, banana suckericides suckericide, banana suckericides tobacco suckericide, banana suckericides sucker control, banana suckericides exporter, banana suckericides supplier, manufacturer banana suckericide, manufacturer suckericide, manufacturer tobacco suckericide, manufacturer sucker control, india suckericide india tobacco suckericide, india sucker control,

 

 

sucker, tobacco suckericides banana suckericide, suckericides tobacco suckericide, suckericides suckericide, suckericides banana suckericide, sucker controller supplier, sucker controller exporter, sucker controller tobacco suckericide, sucker controller suckericide, sucker controller banana suckericide, suckericides sucker control, tobacco suckericides supplier, tobacco suckericides exporter, tobacco suckericides sucker control, tobacco suckericides tobacco suckericide, tobacco suckericides suckericide, suckericides exporter, suckericides supplier, banana suckericides banana suckericide, banana suckericides suckericide, banana suckericides tobacco suckericide, banana suckericides sucker control, banana suckericides exporter, banana suckericides supplier, manufacturer banana suckericide, manufacturer suckericide, manufacturer tobacco suckericide, manufacturer sucker control, india suckericide india tobacco suckericide, india sucker control,

 

 

 

 

 

 

 

 

 

 

 






Boron Deficiency

Boron deficiency

 

 

 

Boron (B) exists primarily in soil solutions as the BO33- anion — the form commonly taken up by plants. One of the most important micronutrients affecting membrane stability, B supports the structural and functional integrity of plant cell membranes. Interestingly, while higher plants require B, animals, fungi and microorganisms don’t.

Micronutrients like Boron (B) are as important as the primary and secondary nutrients in plant nutrition. However, the amounts of micronutrients required for optimum nutrition are much lower. Micronutrient deficiencies are widespread because of increased nutrient demands from the more intensive cropping practices.

A primary function of B relates to cell wall formation, so B-deficient plants may be stunted. Sugar transport in plants, flower retention, and pollen formation and germination also are affected by B. Seed and grain production are reduced with low B supply. Boron-deficiency symptoms first appear at the growing points. This results in a stunted appearance (rosetting); barren ears due to poor pollination; hollow stems and fruit (hollow heart); brittle, discolored leaves, and loss of fruiting bodies. Boron deficiencies mainly occur in acidic, sandy soils in regions of high rainfall and in those with low soil organic matter. Borate ions are mobile in soil and can leach from the root zone. Boron deficiencies are more pronounced during drought periods, when root activity is restricted.

Recommended application rates of B are rather low (0.5 to 2 pounds per acres), but growers should follow them carefully, since the range between B deficiency and toxicity in most plants is narrow. Uniform application of B in the field is very important for that reason.

Soil tests and plant analyses make excellent diagnostic tools to monitor the micronutrient status of soils and crops. Helpfully, deficiency symptoms of these nutrients are highly visible in most economic crops, so growers can readily identify them and begin managing the problem. Micronutrient recommendations are based on soil and plant tissue analyses, the type of crop and expected yield, management level, and research results.

Include soil tests in B fertilization programs, first to assess the level of available B and later to determine possible residual effects (buildup). The most common soil test for B is the hot-water-soluble test. This test is more difficult to conduct than most other micronutrient soil tests, but most B-response data have been correlated with it.

 

Symptoms of deficiency can vary across crop species, but similarities exist for how nutrient insufficiency impacts plant tissue color and appearance. Nutrient deficiencies are commonly associated with the physical location on the plant
(i.e., whether the symptoms are primarily observed on older versus newly formed plant tissue), but these symptoms can spread as the severity of the deficiency progresses.


suckericide, sucker controller, tobacco suckericide, suckericide, tobacco plant growth, improves quality of tobacco 8 Aug

news

 

suckericide_tobacco

suckericide

In the news from : LOTUS EXPORT.

We at Lotus Export manufacturer, export & supply tobacco suckericide, suckericide, suckericides, tobacco sucker control, tobacco sucker & tobacco leaf weight and quality enhancer

AXE-11 liquid de-suckering agent is a contact type suckericide made from natural fattly

alcohols to control suckers in tobacco crops. Application of AXE-11 liquid suckericide

improves quality and quantity of tobacco crop. On application of AXE-11 liquid suckericide

labour cost is decreased and yield of tobacco increases by 25% – 35%.

AXE-11 will not leave any residues on the crop.

 

Note : 
Topping stage is of importance for yield production in tobacco to improve plant growth, leaf size development, improved quantity and quality. Moreover, application of AXE – 11 suckericide in early button stage can control suckers better than flowering stage.

How to apply :

1 litre AXE-11 liquid de-suckering agent should be mixed with 20 litres water (1:20) Mix

thoroughly to form uniform mixture.

Apply the solution using an applicator after topping from top to bottom in clear weather

between 10.00am to 4.00pm

AXE-11 liquid de-suckering agent shall be applied on requirement.

 

Packing Available in 2.5 litre HDPE jerry can

 

suckericide

sucker

tobacco suckericide

 


16 ESSENTIAL NUTRIENTS IN CROP DEVELOPMENT

Sixteen plant food nutrients are essential for proper crop development. Each is equally important to the plant, yet each is required in vastly different amounts. These differences have led to the grouping of these essential elements into three categories; primary (macro) nutrients, secondary nutrients, and micronutrients.

PRIMARY (MACRO) NUTRIENTS

Primary (macro) nutrients are nitrogen, phosphorus, and potassium. They are the most frequently required in a crop fertilization program. Also, they are need in the greatest total quantity by plants as fertilizer.

NITROGEN

  • Necessary for formation of amino acids, the building blocks of protein
    · Essential for plant cell division, vital for plant growth
    · Directly involved in photosynthesis
    · Necessary component of vitamins
    · Aids in production and use of carbohydrates
    · Affects energy reactions in the plant

PHOSPHORUS

  • Involved in photosynthesis, respiration, energy storage and transfer, cell division, and enlargement
    · Promotes early root formation and growth
    · Improves quality of fruits, vegetables, and grains
    · Vital to seed formation
    · Helps plants survive harsh winter conditions
    · Increases water-use efficiency
    · Hastens maturity

POTASSIUM
· Carbohydrate metabolism and the break down and translocation of starches
· Increases photosynthesis
· Increases water-use efficiency
· Essential to protein synthesis
· Important in fruit formation
· Activates enzymes and controls their reaction rates
· Improves quality of seeds and fruit
· Improves winter hardiness
· Increases disease resistance

SECONDARY NUTRIENTS
The secondary nutrients are calcium, magnesium, and sulphur. For most crops, these three are needed in lesser amounts that the primary nutrients. They are growing in importance in crop fertilization programs due to more stringent clean air standards and efforts to improve the environment.

CALCIUM
· Utilized for Continuous cell division and formation
· Involved in nitrogen metabolism
· Reduces plant respiration
· Aids translocation of photosynthesis from leaves to fruiting organs
· Increases fruit set
· Essential for nut development in peanuts
· Stimulates microbial activity

MAGNESIUM
· Key element of chlorophyll production
· Improves utilization and mobility of phosphorus
· Activator and component of many plant enzymes
· Directly related to grass tetany
· Increases iron utilization in plants
· Influences earliness and uniformity of maturity

SULPHUR
· Integral part of amino acids
· Helps develop enzymes and vitamins
· Promotes nodule formation on legumes
· Aids in seed production
· Necessary in chlorophyll formation (though it isn’t one of the constituents)

MICRONUTRIENTS

The micronutrients are boron, chlorine, cooper, iron, manganese, molybdenum, and zinc. These plant food elements are used in very small amounts, but they are just as important to plant development and profitable crop production as the major nutrients. Especially, they work “behind the scene” as activators of many plant functions.

BORON

  • Essential of germination of pollon grains and growth of pollen tubes
    · Essential for seed and cell wall formation
    · Promotes maturity
    · Necessary for sugar translocation
    · Affects nitrogen and carbohydrate

CHLORINE

  • Not much information about its functions
    · Interferes with P uptake
    · Enhances maturity of small grains on some soils

COPPER

  • Catalyzes several plant processes
    · Major function in photosynthesis
    · Major function in reproductive stages
    · Indirect role in chlorophyll production
    · Increases sugar content
    · Intensifies color
    · Improves flavor of fruits and vegetables

IRON

  • Promotes formation of chlorophyll
    · Acts as an oxygen carrier
    · Reactions involving cell division and growth

MAGANESE

  • Functions as a part of certain enzyme systems
    · Aids in chlorophyll synthesis
    · Increases the availability of P and CA

MOLYBDENUM

  • Required to form the enzyme “nitrate reductas” which reduces nitrates to ammonium in plant
    · Aids in the formation of legume nodules
    · Needed to convert inorganic phosphates to organic forms in the plant

ZINC

  • Aids plant growth hormones and enzyme system
    · Necessary for chlorophyll production
    · Necessary for carbohydrate formation
    · Necessary for starch formation
    · Aids in seed formation

 

In addition to the 13 nutrients listed above, plants require carbon, hydrogen, and oxygen, which are extracted from air and water to make up the bulk of plant weight.

 


Zinc deficiency

 Zinc deficiency

Zinc (Zn) is taken up by plants as the divalent Zn2+ cation. It was one of the first micronutrients recognized as essential for plants and the one most commonly limiting yields. Although Zn is required in small amounts, high yields are impossible without it.

Zinc (Zn) deficiency is growing in the Midwest, and it’s more likely to occur in corn than soybean fields. This is happening in part to earlier planting of corn in cool and moist soil. Also, more residue resulting from conservation tillage and higher grain yields places added stress on seedlings to absorb Zn from soil.

Zinc is heavily involved in enzyme systems that regulate the early growth stages, and is vital for fruit, seed and root system development; photosynthesis; formation of plant growth regulators; and crop stress protection. Further, Zn is a team player with nitrogen (N), phosphorus (P) and potassium (K) in many plant-development processes.

Soils require Zn in very small amounts compared with N or K. Only about a half-pound of Zn is needed per acre for high-yield (180 bushels per acre) corn production. Sixty-bushel wheat needs about 0.28 pound of Zn per acre. Yet, lack of Zn can limit plant growth, just like N or K, if the soil is deficient or crop uptake is restricted.

In addition to being an essential component of various enzyme systems for energy production, Zn is required in protein synthesis and growth regulation. Zinc-deficient plants also exhibit delayed maturity. Since Zn is not mobile in plant, Zn-deficiency symptoms occur mainly in new growth. This lack of mobility in plants suggests the need for a constant supply of available Zn for optimum growth.

The most visible Zn-deficiency symptoms are short internodes (rosetting) and a decrease in leaf size. Chlorotic bands along the midribs of corn, mottled leaves of dry bean and chlorosis of rice are characteristic Zn-deficiency symptoms. Loss of lower bolls of cotton and narrow, yellow leaves in the new growth of citrus also have been identified as symptoms of Zn deficiency. Delayed maturity also indicates Zn-deficient plants.

Zinc loss takes place in many ways. Deficiencies are mainly found on sandy soils low in organic matter and on organic soils. They occur more often during cold, wet spring weather and are related to reduced root growth and activity. Periods of lower microbial activity decrease Zn release from soil organic matter. Zinc uptake by plants decreases with increased soil pH. High levels of available P and iron in soils also adversely affect the uptake of Zn.

 

 

Symptoms of deficiency can vary across crop species, but similarities exist for how nutrient insufficiency impacts plant tissue color and appearance. Nutrient deficiencies are commonly associated with the physical location on the plant
(i.e., whether the symptoms are primarily observed on older versus newly formed plant tissue), but these symptoms can spread as the severity of the deficiency progresses.


Sulfur deficiency

Sulfur deficiency

 

Sulfur (S) is a part of every living cell and is a constituent of two of the 20 amino acids that form proteins. Unlike the other secondary nutrients like calcium and magnesium (which plants take up as cations), S is absorbed primarily as the S042- anion. It can also enter plant leaves from the air as dioxide (SO2) gas.

A chain is only as strong as its weakest link. Often overlooked, sulfur (S) can be that weak link in many soil fertility and plant nutrition programs. As of late, there are several reasons for the increased observance of S deficiencies and increased S needs.

Government regulations now restrict the amount of sulfur dioxide (SO2) that can be returned to the atmosphere from coal-burning furnaces. Most of the S is now removed from natural gas used in home heating and in industry. Also, catalytic converters in new automobiles remove most of the S that was previously returned to the atmosphere when S-containing gasoline was burned in automobiles. In addition, S-free compounds have replaced many of the insecticides and fungicides formerly applied to control insects and diseases in crops. As a result of these government restrictions, less S returns to the soil in rainfall.

Sulfur is supplied to plants from the soil by organic matter and minerals, but it’s often present in insufficient quantities and at inopportune times for the needs of many high-yielding crops. Organic matter ties up most S to the soil, where it remains unavailable to plants until soil bacteria convert it to sulfate (SO4-2) form. That process is known as mineralization.

Just like nitrate nitrogen (N), sulfate moves through the soil and can leach beyond the active root zone in some soils during heavy rainfall or irrigation. Sulfate may move back upward toward the soil surface as water evaporates, except in the sandier, coarse-textured soils that may be void of capillary pores. This mobility of sulfate S makes it difficult to calibrate soil tests and use them as predictive tools for S fertilization needs.

In the field, plants deficient in S show pale green coloring of the younger leaves, although the entire plant can be pale green and stunted in severe cases. Leaves tend to shrivel as the deficiency progresses.

Sulfur, like N, is a constituent of proteins, so deficiency symptoms are similar to those of N. Nitrogen-de